Conventional Network

Network Design

- Network design is a strategic decision. It has a long-term impact on a supply chain's performance.
- It determines very much flexibility / responsiveness and cost effectiveness of a supply chain.
- Cost focus: Find the lowest-cost location for manufacturing facilities.
- Responsiveness: Locate facilities closer to the market to react quickly to changing market needs.

Whepe inventory needs to be for a one week order response time - typical results --> 1 DC

Where inventory needs to be for a next day order response time - typical results --> 13 DCs

Service and Number of Facilities

Where inventory needs to be for a 3 day order response time - typical results $->5 \mathbf{D C s}$

Where inventory needs to be for a same day / next day order response time - typical results --> 26 DCs

Inventory Costs and Number of Facilities

Number of facilities

Transportation Costs and
 Number of Facilities

Consolidation Vs Localization

- Consolidation is necessary if products are relatively standard and virtually no local features are needed to be added.
- Localization is suitable for products need high responsiveness and local features are important.
- HP design different printer for North American, Europe, and Asia.

Facility Costs and Number of Facilities

Variation in Logistics Costs and Response Time with Number of Facilities

Factor Influencing Network Design

Decisions

- Macroeconomic
- Politic
- Social
- Infrastructure

Macroeconomic Factors to Consider in Designing a Network

- Tariff and Tax incentives
- Guang Zhou offered free tax and other incentives for investors. Many manufacturing and High Tech. companies established factories in Guang Zhou as a result.
- US responded import and quota barriers by developing supplier in many countries.
- Exchange Rates and Demand Risks
- In 1980s yen was appreciated. Exporting companies received lower profits. Many companies responded by moving operations overseas.

Factors Influencing Distribution Network Design

- Distribution network performance evaluated along two dimensions at the highest level:
- Customer needs that are met
- Cost of meeting customer needs
- Distribution network design options must therefore be compared according to their impact on customer service and the cost to provide this level of service

The Role of Distribution in the Supply Chain

- Distribution: the steps taken to move and store a product from the supplier stage to the customer stage in a supply chain
- Distribution directly affects cost and the customer experience and therefore drives profitability
- Choice of distribution network can achieve supply chain objectives from low cost to high responsiveness
- Examples: Wal-Mart, Dell, Proctor \& Gamble, Grainger

$$
4.20
$$

Factors Influencing Distribution Network Design

- Elements of customer service influenced by network structure:
- Response time
- Product variety
- Product availability
- Customer experience
- Order visibility
- Returnability
- Supply chain costs affected by network structure:
- Inventories
- Transportation
- Facilities and handling
- Information

Giobal Bussiness Unit

Beauty \& Grooming
Health \& Well Being
Household Care

Restrukturisasi P \& G:
Menjadi lebih efisien dan responsive

- Secara umum terjadi perampingan dari 11 region menjadi 7 region.
- North America
- South America
- Western Europe
- Middle East dan Eastern Europe
- North East Asia
- Greater China
- AAl dengan pusat di Singapore
- Thailand menjadi pusat produksi shampoo.
- Philippine akan dijadikan pusat pabrik detergent.
- Indonesia akan menjadi pusat produksi produk kesehatan dan perawatan rambut.
- Marketing berpusat di Singapore.

KEUNTUNGAN RESTRUKTURISASI P \& G

- Penghematan biaya transportasi staff
- Peningkatan economic of relationship dengan supplier (membeli dengan skala yang lebih besar)
- Penghematan biaya promosi

Competitors Are Mushrooming:
Only 4 in 1997, more than 50 in 2001

Toward Major Changes

Problems with Initial Configuration

- Long
- Costly
- Unresponsive

126 days of fulfillment cycle:

- Transit from supplier to DC 30 days
- In DC 91 days
- From DC to stores 5 days

The Project

- A team of 100 people from 14 organizations
- Involving 5 countries and 6 time zones
- Support from top management
- Incentives for keeping the spirit high
- Beer game to attract involvement (including suppliers)

Results

- Inventory turnover increases from 3 to 45

- Lead time decreases from 126 days to 8 days.
Cost savings of US \$ 50 million (from overhead, inventory, negotiation with suppliers)

Gravity Location Models

- Is used to find the location that minimizes the cost of transporting raw materials from the points of supply and transporting finished goods to the customers.
- Let:
$\mathrm{X}_{\mathrm{n}}, \mathrm{Y}_{\mathrm{n}}$: coordinate location of either a market or a supply point
$\mathrm{Cn} \quad$: cost of shipping one unit for one km from or to location n the facility to be located
Dn : Quantity to be shipped from or to location n to the facility
dn : the distance to or from facility n to the facility
- The distance dn is approximated as follows: (If (x, y) is the coordinate of the location of the facility)

$$
d_{n}=\sqrt{\left(x-x_{n}\right)^{2}+\left(y-y_{n}\right)^{2}}
$$

MODELS FOR LOCATION PROBLEMS

- Single Facility Location: Center of Gravity, Grid, Centroid.
- Multi Facility Location: Multiple gravity, Mixed integer programming, Simulation, Heuristics.
- Capacitated Plant Location Model

Re-engineered Configuration

- If there are k supply and market points then total cost of transportation to and from the facility is:

$$
T C=\sum_{n=1}^{k} d n D n C n
$$

- The location that minimizes the TC can be obtained with the following steps:

1. For each supply or market position n, calculate $d n$ as above
2. Obtain a new location (x^{\prime}, y^{\prime}) where:

$$
x^{\prime}=\frac{\sum_{n=1}^{k} \frac{D_{n} C_{n} x_{n}}{d_{n}}}{\sum_{n=1}^{k} \frac{D_{n} C_{n}}{d_{n}}} \quad y^{\prime}=\frac{\sum_{n=1}^{k} \frac{D_{n} C_{n} y_{n}}{d_{n}}}{\sum_{n=1}^{k} \frac{D_{n} C_{n}}{d_{n}}}
$$

3. If the new location is almost the same as (x, y) then stop, otherwise set $(x, y)=\left(x^{\prime}, y^{\prime}\right)$ and go to step 1 .

There are six existing facilities. The new one (a warehouse) will serve all six facilities.

First iteration using $(x, y)=(0,0)$, Result (6.0, 6.4)

Xn	Yn	dn	Dn	Cn	DnCnXn/ dn	DnCnYn/ dn	DnCn/ dn
5	1	5.1	100	1.5	147.1	29.4	29.4
4	6	7.2	700	1.8	698.9	1048.4	174.7
8	12	14.4	200	2.5	277.4	416.0	34.7
12	5	13.0	150	1.9	263.1	109.6	21.9
5	9	10.3	400	1.7	330.2	594.4	66.0
15	3	15.3	200	2.1	411.8	82.4	27.5
Total							

$X^{\prime}=2128.5 / 354.2=6.0$
$Y^{\prime}=2280.2 / 354.2=6.4$

Third Iteration: Result (5.1, 6.9)

Xn	Yn	dn	Dn	Cn	DnCnXn/ dn	DnCnYn/ dn	DnCn/d n
5	1	5.9	100	1.5	126.8	25.4	25.4
4	6	1.7	700	1.8	3028.2	4542.4	757.1
8	12	5.7	200	2.5	698.7	1048.1	87.3
12	5	6.9	150	1.9	498.0	207.5	41.5
5	9	2.1	400	1.7	1590.5	2862.8	318.1
15	3	10.4	200	2.1	608.0	121.6	40.5
Total					6550.2	8807.8	1269.9

The Relevant Data

$\mathbf{X n}$	$\mathbf{Y n}$	$\mathbf{d n}$	$\mathbf{D n}$	$\mathbf{C n}$
5	1	5.1	100	1.5
4	6	7.2	700	1.8
8	12	14.4	200	2.5
12	5	13.0	150	1.9
5	9	10.3	400	1.7
15	3	15.3	200	2.1

Second Iteration: Result (5.4, 6.9)

Xn	Yn	dn	Dn	Cn	DnCnXn/ dn	DnCnYn/ dn	DnCn/d n
5	1	5.5	100	1.5	136.6	27.3	27.3
4	6	2.0	700	1.8	2471.1	3706.6	617.8
8	12	5.9	200	2.5	672.7	1009.0	84.1
12	5	6.2	150	1.9	555.1	231.3	46.3
5	9	2.8	400	1.7	1220.5	2197.0	244.1
15	3	9.6	200	2.1	654.8	131.0	43.7
Total					5710.8	7302.1	1063.2

Fourth Iteration: Result (5.1, 6.9)

Xn	Yn	dn	Dn	Cn	DnCnXn/ dn	DnCnYn/ dn	DnCn/d n
5	1	5.9	100	1.5	127.0	25.4	25.4
4	6	1.5	700	1.8	3360.0	5040.0	840.0
8	12	5.8	200	2.5	687.5	1031.3	85.9
12	5	7.1	150	1.9	484.4	201.8	40.4
5	9	2.1	400	1.7	1611.8	2901.2	322.4
15	3	10.5	200	2.1	597.3	119.5	39.8
Total					6868.0	9319.1	1353.9

Final Position: Warehouse in $(5.1,6.9)$

Problem Structure

Problem

	Pasar						
Pabrik	Fixed	JTM	JTG	JB	JKT	SS	Kapasitas
Surabaya	250	5	10	15	16	25	$\mathbf{5 0 0 0}$
Pasuruan	165	10	12	17	18	25	$\mathbf{3 2 0 0}$
Gresik	180	6	9	14	12	24	$\mathbf{4 0 0 0}$
Tangerang	200	15	7	4	6	10	$\mathbf{4 0 0 0}$

Permintaan	2000	1800	1500	3000	1700

Capacitated Location Problem

- Suppose there are n factories in different locations to be selected to satisfy demand in m market areas. Each factory location is associated with a fixed cost. The production and delivery costs to from each factory to each demand point is
known.
- The problem to solve is: Which factory to open and from which factory each market demand is fulfilled?
- Suppose:
$\mathrm{i}=$ factory location (1, 2,...n)
j = demand point (1, 2, ... m)
$\mathrm{Dj}=$ demand of market area j
$\mathrm{Ki}=$ capacity of factory i
$\mathrm{fi}=$ annualized fixed cost for factory i
$\mathrm{cij}=$ cost of producing and delivering one unit of product from factory i to demand area
$y i=1$ if factory i is selected, 0 otherwise
xij $=$ the amount shipped from factory i to market j

Capacitated Location Problem

$$
\begin{gathered}
\text { Minimise } \sum_{i} f_{i} y_{i}+\sum_{i} \sum_{j} c_{i j} x_{i j} \\
\sum_{i} x_{i j}=D_{j} \\
\sum_{j} x_{i j} \leq K_{i} y_{i} \\
x_{i j} \geq 0 ; \quad y_{i} \in(0,1)
\end{gathered}
$$

Penyelesaian dengan software LINDO

- MIN 250 Y $1+165$ Y2 $+180 \mathrm{Y} 3+200 \mathrm{Y} 4+5 \mathrm{X} 11+10 \mathrm{X} 12+15 \mathrm{X} 13+16 \mathrm{X} 14+25 \mathrm{X} 15+10 \mathrm{X} 21$ $+12 \times 22+17 \times 23+18 \times 24+25 \times 25+6 \times 31+9 \times 32+14 \times 33+12 \times 34+24 \times 35+15 \times 41+7$ $\mathrm{X} 42+4 \mathrm{X} 43+6 \mathrm{X} 44+10 \mathrm{X} 45$
- SUBJECT TO
! Capacity of each factory
$\mathrm{X} 11+\mathrm{X} 12+\mathrm{X} 13+\mathrm{X} 14+\mathrm{X} 15-5000 \mathrm{Y} 1<=0$
$\mathrm{X} 21+\mathrm{X} 22+\mathrm{X} 23+\mathrm{X} 24+\mathrm{X} 25-3200 \mathrm{Y} 2<=0$ $X 31+X 32+X 33+X 34+X 35-4000 Y 3<=0$ $\mathrm{X} 41+\mathrm{X} 42+\mathrm{X} 43+\mathrm{X} 44+\mathrm{X} 45-4000 \mathrm{Y} 4<=0$

1 Demand of each market areas
$\mathrm{X} 11+\mathrm{X} 21+\mathrm{X} 31+\mathrm{X} 41=2000$ $\mathrm{X} 12+\mathrm{X} 22+\mathrm{X} 32+\mathrm{X} 42=1800$ $\mathrm{x} 13+\mathrm{x} 23+\mathrm{x} 33+\mathrm{x} 43=1500$ $\mathrm{x}_{14}+\mathrm{x} 24+\mathrm{x} 34+\mathrm{x} 44=3000$ $\mathrm{x} 15+\mathrm{X} 25+\mathrm{x} 35+\mathrm{x} 45=1700$ END

Penyelesaian dengan Solver Excel

	A	B	C	D	E	F	G	H	I	J
12										
13	Variabel	yi	Fixed	JTM	JTG	JB	JKT	SS	Total	Kapasitas
14	Surabaya	0	250	0	0	0	0	0	0	5000
15	Pasuruan	0	165	0	0	0	0	0	0	3200
16	Gresik	0	180	0	0	0	0	0	0	4000
17	Tangerang	0	200	0	0	0	0	0	0	4000
18	total			0	0	0	0	0		
19	permintaan			$\mathbf{2 0 0 0}$	$\mathbf{1 8 0 0}$	$\mathbf{1 5 0 0}$	$\mathbf{3 0 0 0}$	$\mathbf{1 7 0 0}$		
20										
21										
22	total biaya	0								

Factory and Warehouse Location-Delivery Problem

Solution

Variabel	$\mathbf{y}_{\mathbf{i}}$	JTM	JTG	JB	JKT	SS
Surabaya	1	2000	0	0	0	0
Pasuruan	0	0	0	0	0	0
Gresik	1	0	1800	0	2200	0
Tangerang	1	0	0	1500	800	1700

Solusi Akhir

	A	B	C	D	E	F	G	H	I	J
12	Gariabel	yi	Fixed	JTM	JTG	JB	JKT	SS	Total	Kapasitas
13	Var									
14	Surabaya	1	250	2000	0	0	0	0	2000	5000
15	Pasuruan	0	165	0	0	0	0	0	0	3200
16	Gresik	1	180	0	1800	0	2200	0	4000	4000
17	Tangerang	1	200	0	0	1500	800	1700	4000	4000
18	total			2000	1800	1500	3000	1700		
19	permintaan			$\mathbf{2 0 0 0}$	$\mathbf{1 8 0 0}$	$\mathbf{1 5 0 0}$	$\mathbf{3 0 0 0}$	$\mathbf{1 7 0 0}$		
20										
21										
22	total biaya	81030								

Dari hasil di atas dapat diketahui hal-hal sebagai berikut

- Pabrik di Surabaya menyalurkan produk ke pasar JTM sebanyak 2000 unit.
- Pabrik di Gresik menyalurkan produk ke pasar JTG sebanyak 1800 unit dan ke pasar JKT sebanyak 2200 unit.
- Pabrik di Tangerang menyalurkan produk ke pasar JB sebanyak 1500 unit, ke JKT

800 unit, dan ke SS sebanyak 1700 unit.

- Total biaya pengiriman yang dihasilkan adalah sebesar Rp 81.030 per tahun

Factory and Warehouse Location-Delivery Problem

$$
\begin{aligned}
\text { Minimise } \sum_{i} f_{i} y_{i}+\sum_{w} f_{w} y_{w}+\sum_{i} \sum_{w} c_{i w} x_{i w}+\sum_{w} \sum_{j} c_{w j} x_{w j} \\
\sum_{w} x_{w j}=D_{j} \\
\sum_{w} x_{i w} \leq K_{i} y_{i} \\
\sum_{i} x_{i w}=\sum_{j} x_{w j} \\
\sum_{j} x_{w j} \leq K_{w} y_{w}
\end{aligned}
$$

Homework: Use LP software to solve the following problem. You are to decide the most economical factory and warehouse selections.

From I To	W1	W2	W3	Annual. fixed cost	Capacity
F1	320	330	400	$2,200,000$	4000
F2	400	300	370	$1,800,000$	4800
F3	200	220	250	$2,500,000$	5200

FIT	M1	M2	M3	M4	M5	Ann. Fixed cost	Annual Capacity
W1	420	320	320	220	180	200,000	3700
W2	350	180	700	120	110	350,000	4800
W3	230	620	200	340	250	380,000	5000
Annual Demand	$\mathbf{1 4 0 0}$	$\mathbf{1 5 0 0}$	$\mathbf{1 2 5 0}$	$\mathbf{1 1 0 0}$	$\mathbf{1 8 0 0}$		

