

OPERATIONAL RESEARCH II

Agustina Eunike, ST., MT., MBA.
Industrial Engineering – University of Brawijaya

MINIMUM-COST FLOW PROBLEM

MCFP APPLICATION

Kind of Application	Supply Nodes	Transshipment Nodes	Demand Nodes
Operation of a distribution network	Sources of goods	Intermediate storage facilities	Customers
Solid waste management	Sources of solid waste	Processing facilities	Landfill locations
Operation of a supply network	Vendors	Intermediate warehouses	Processing facilities
Coordinating product mixes at plants	Plants	Production of a specific product	Market for a specific product
Cash flow management	Sources of cash at a specific time	Short-term investment options	Needs for cash at a specific time

Minimum Cost Flow Problem

$$\begin{aligned} \min & \sum_{\text{all arcs}} c_{ij}x_{ij} \\ \text{s.t.} & \sum_{j} x_{ij} - \sum_{k} x_{ki} = b_{i} \\ & L_{ij} \leq x_{ij} \leq U_{ij} \end{aligned} \qquad \text{(for each node i in the network)}$$

Minimum Cost Flow Problem

 $\begin{array}{ll} b_i>0 & \text{if node } i \text{ is a supply node,} \\ b_i<0 & \text{if node } i \text{ is a demand node,} \\ b_i=0 & \text{if node } i \text{ is a transshipment node.} \\ x_y=\text{number of units of flow sent from node } i \text{ to node } j \text{ through arc } (i,j) \\ b_i=\text{net supply (outflow}-\text{inflow)} \text{ at node } i \\ c_y=\text{cost of transporting 1 unit of flow from node } i \text{ to node } j \text{ via arc } (i,j) \\ (\text{if there is no lower bound, let } L_y=0) \\ U_{ij}=\text{upper bound on flow through arc } (i,j) \\ (\text{if there is no upper bound, let } L_y=\infty) \\ \end{array}$

12/03/2015

12/03/2015 Operations Research

1

Linear Programming

Minimize $Z = 2X_{AB} + 4X_{AC} + 9X_{AD} + 3X_{BC} + X_{CE} + 3X_{DE} + 2X_{ED}$;

subject to $\begin{aligned} & \text{Subject to} \\ & \text{$X_{AB} + X_{AC} + X_{AD} = 50$} \\ & -X_{AB} + X_{BC} = 40 \end{aligned} \\ & -X_{AC} - X_{BC} + X_{CE} = 0 \\ & -X_{AD} + X_{DE} - X_{ED} = -30 \\ & -X_{CE} - X_{DE} + X_{ED} = -60 \end{aligned} \\ & \text{$X_{AB} \le 10$} \\ & \text{$X_{CE} \le 80$} \\ & \text{$X_{ij} \ge 0$; untuk semua i dan j} \end{aligned}$

12/03/2015 Operations Research 7

Some Assumptions

- 1. All data is integral. (Needed for some proofs, and some running time analysis).
- 2. The network is directed and connected
- 3. $\sum_{i=1 \text{ to } n} b(i) = 0$. (Otherwise, there cannot be a feasible solution.)

Minimum Cost Flow Problem

- Special Cases of MCFP:
 - Transportation
 - Transhipment
 - $\, \mathsf{Assignment}$
 - Shortest Path
 - Maximum Flow
 - CPM
 - -...

Minimum Cost Flow Problem

• Transportation:

$$\begin{array}{ll} \text{Minimize} & Z = \sum\limits_{i=1}^m \sum\limits_{j=1}^n c_{ij}x_{ij}, \\ \text{subject to} & \\ \sum\limits_{j=1}^n x_{ij} = s_i & \text{for } i=1,2,\ldots,m, \\ \sum\limits_{i=1}^m x_{ij} = d_j & \text{for } j=1,2,\ldots,n, \\ \text{and} & \\ x_{ij} \geq 0, & \text{for all } i \text{ and } j. \end{array}$$

• Assignment:

Minimize
$$Z = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij}x_{ij}$$
.
subject to
$$\sum_{j=1}^{n} x_{ij} = 1 \quad \text{for } i = 1, 2, \dots, n,$$

$$\sum_{i=1}^{n} x_{ij} = 1 \quad \text{for } j = 1, 2, \dots, n,$$
and
$$x_{ij} \ge 0, \quad \text{for all } i \text{ and } j$$

$$(x_{ij}) \text{ binary}, \quad \text{for all } i \text{ and } j$$

$$x_{ij} = \begin{cases} 1 & \text{if assignee } i \text{ performs task } j, \end{cases}$$

$$x_{ij} = \begin{cases} 0 & \text{if not,} \end{cases}$$

Minimum Cost Flow Problem

· Shortest Path

Minimum Cost Flow Problem

• Shortest Path

$$x_{ij} = \text{amount of flow in arc } (i, j)$$

$$= \begin{cases} 1, & \text{if arc } (i, j) \text{ is on the shortest route} \\ 0, & \text{otherwise} \end{cases}$$

 $c_{ij} = {\rm length} \ {\rm of} \ {\rm arc} \ (i,j)$ Thus, the objective function of the linear program becomes

Minimize
$$z = \sum_{\substack{\text{all defined} \\ \text{area } (i,j)}} c_{ij} x_{ij}$$

The constraints represent the $conservation-of-flow\ equation$ at each node:

Total input flow = Total output flow

Mathematically, this translates for node j to

$$\left(\frac{\text{External input}}{\text{into node } j} \right) + \sum_{\substack{\text{all defined} \\ \text{sect}(i,i,j)}} x_{ij} = \left(\frac{\text{External output}}{\text{from node } j} \right) + \sum_{\substack{\text{all defined} \\ \text{sect}(i,i,k)}} x_{jk}$$

Minimum Cost Flow Problem

Maximum Flow

For a flow to be feasible, it must have two characteristics: $0 \le \text{flow through each arc} \le \text{arc capacity}$ and

Flow into node i = flow out of node i $\max z = x_0$

$$\begin{aligned} \max z &= x_0 \\ \text{s.t.} & x_{m,1} \leq 2 \\ x_{m,2} \leq 3 \\ x_{12} \leq 3 \\ x_{2,d} \leq 2 \\ x_{13} \leq 4 \\ x_{3,d} \leq 1 \\ x_0 &= x_{m,1} + x_{m,2} \\ x_{m,1} &= x_{12} + x_{13} \\ x_{m,2} + x_{12} &= x_{2,d} \\ x_{13} &= x_{3,d} + x_{2,d} = x_{0} \end{aligned}$$

 $x_{ij} \ge 0$

(Arc capacity constraints)

(2)2 (2)3 (2)2

(Node so flow constraint) (Node 1 flow constraint) (Node 2 flow constraint) (Node 3 flow constraint)

(Node si flow constraint)

Practices...

United Airlines has seven daily flights from BOS to SFO, every two hours, starting at 7am.

- Capacities are 100, 100, 100, 150, 150, 150, and ∞ .
- Passengers suffering from overbooking are diverted to later flights.
- Delayed passengers get \$200 plus \$20 for every hour of delay.
- Suppose that today the first six flighs have 110, 160, 103, 149
 175, and 140 confirmed reservations.

Determine the most economical passenger routing strategy!

Minimum Cost Flow Problem

Maximum Flow

				mi	$n z = x_0$				
X _{00,1}	X _{88,2}	Χn	X ₂	X _{0,sf}	X _{2,81}	X ₀		rhs	Constraint
1	1	0	0	0	0	-1	=	0	Node so
-1	0	1	1	0	0	0	-	0	Node 1
0	-1	0	-1	0	1	0	=	0	Node 2
0	0	-1	0	1	0	0	-	0	Node 3
0	0	0	0	-1	-1	1	=	0	Node si
1	0	0	0	0	0	0	≤	2	Arc (so, 1
0	1	0	0	0	0	0	≤	3	Arc (so, 2
0	0	1	0	0	0	0	≤	4	Arc (1, 3)
0	0	0	1	0	0	0	≤	3	Arc (1, 2)
0	0	0	0	1	0	0	≤	1	Arc (3, si
0	0	0	0	0	1	0	\leq	2	Arc (2, si
				All variab	les nonne	gative			

Each variable x_{ij} has a coefficient of +1 in the node i flow balance equation, a coefficient of -1 in the node j flow balance equation, and a coefficient of 0 in all other flow balance equations.

NETWORK SIMPLEX METHOD

• Comparison Running Time

Algorithm	Running Time (sec)	# Iteration:	
Standard Simplex	334.59	42759	
Network Simplex	7.37	23306	
Ratio	2.2 %	54 %	

THE NETWORK SIMPLEX METHOD

Summary

- 1. Network simplex is extremely fast in practice.
- Relying on network data structures, rather than matrix algebra, causes the speedups. It leads to simple rules for selecting the entering and exiting variables.
- 3. A good pivot rule can dramatically reduce running time in practice.

References

- Frederick Hillier and Gerald J.Lieberman, Introduction to Operations Research, Holden Day Ltd, San Fransisco, 1997
- Taha, Hamdy, Operation Research: An Introduction, Macmillan Publishing Company., New York, 1997